Methylmercury chloride damage to the adult rat hippocampus cannot be detected by proton magnetic resonance spectroscopy
نویسندگان
چکیده
Previous studies have found that methylmercury can damage hippocampal neurons and accordingly cause cognitive dysfunction. However, a non-invasive, safe and accurate detection method for detecting hippocampal injury has yet to be developed. This study aimed to detect methylmercury-induced damage on hippocampal tissue using proton magnetic resonance spectroscopy. Rats were given a subcutaneous injection of 4 and 2 mg/kg methylmercury into the neck for 50 consecutive days. Water maze and pathology tests confirmed that cognitive function had been impaired and that the ultrastructure of hippocampal tissue was altered after injection. The results of proton magnetic resonance spectroscopy revealed that the nitrogen-acetyl aspartate/creatine, choline complex/creatine and myoinositol/creatine ratio in rat hippocampal tissue were unchanged. Therefore, proton magnetic resonance spectroscopy can not be used to determine structural damage in the adult rat hippocampus caused by methylmercury chloride.
منابع مشابه
Correction: Metabolic Profiling of Dividing Cells in Live Rodent Brain by Proton Magnetic Resonance Spectroscopy (1HMRS) and LCModel Analysis
RATIONALE Dividing cells can be detected in the live brain by positron emission tomography or optical imaging. Here we apply proton magnetic resonance spectroscopy (1HMRS) and a widely used spectral fitting algorithm to characterize the effect of increased neurogenesis after electroconvulsive shock in the live rodent brain via spectral signatures representing mobile lipids resonating at ∼1.30 p...
متن کاملAssessment of Cerebellar Metabolites Levels in Athletes Compared to Non-Athlete by Proton Magnetic Resonance Spectroscopy
Background: Adaptability to exercise training can increase the plasticity of the brain, and whether this can be due to a beneficial change in the neurometabolites, is uncertain. The purpose of this study was to evaluate basal metabolic concentrations of cerebellum, including N-acetyl aspartate (NAA) and Cholin(Cho) in athletes and compare them with non-athlete subjects. Materials and Methods: I...
متن کاملSurvey of potential diagnostic metabolite markers in serum of the rat model of Alzheimer’s disease using nuclear magnatic resonance (1H-NMR) technique
Introduction: The high prevalence of Alzheimerchr('39')s disease (AD) in todaychr('39')s societies indicates an urgent need for the development of methods that will help the early diagnosis of the disease. In this study, using proton nuclear magnetic resonance spectrometry (1H-NMR) metabolomics, identification of altered and distinct metabolites in serum of the rat model of AD was performed com...
متن کاملEffects of fluoxetine on the amygdala and the hippocampus after administration of a single prolonged stress to male Wistar rates: In vivo proton magnetic resonance spectroscopy findings.
Posttraumatic stress disorder (PTSD) is an anxiety- and memory-based disorder. The hippocampus and amygdala are key areas in mood regulation. Fluoxetine was found to improve the anxiety-related symptoms of PTSD patients. However, little work has directly examined the effects of fluoxetine on the hippocampus and the amygdala. In the present study, male Wistar rats received fluoxetine or vehicle ...
متن کاملThe aging hippocampus: a multi-level analysis in the rat.
In the current experiment we conducted a multi-level analysis of age-related characteristics in the hippocampus of young adult (3 months), middle-aged (12 months), and old (24 months) Fisher 344xBrown Norway hybrid (FBNF1) rats. We examined the relationships between aging, hippocampus, and memory using a combination of behavioral, non-invasive magnetic resonance imaging and spectroscopy, and po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014